LEFT-INVARIANT MINIMAL UNIT VECTOR FIELDS ON THE SEMI-DIRECT PRODUCT Rn

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Left - Invariant Minimal Unit Vector Fields on the Semi - Direct Product

We provide the set of left-invariant minimal unit vector fields on the semi-direct product Rn oP R, where P is a nonsingular diagonal matrix and on the 7 classes of 4-dimensional solvable Lie groups of the form R3 oP R which are unimodular and of type (R).

متن کامل

Invariant Minimal Unit Vector Fields on Lie Groups

We provide examples of left-invariant unit vector fields on Lie groups.

متن کامل

Left-invariant Minimal Unit Vector Fields on a Lie Group of Constant Negative Sectional Curvature

We find all left-invariant minimal unit vector fields and strongly normal unit vector fields on a Lie group which is isometric to the hyperbolic space.

متن کامل

A tensor product approach to the abstract partial fourier transforms over semi-direct product groups

In this article, by using a partial on locally compact semi-direct product groups, we present a compatible extension of the Fourier transform. As a consequence, we extend the fundamental theorems of Abelian Fourier transform to non-Abelian case.

متن کامل

ON CONFORMALLY INVARIANT EQUATIONS ON Rn

In this paper we provide a complete characterization of fully nonlinear conformally invariant differential operators of any integer order on R, which extends the result proved for operators of the second order by A. Li and the first named author in [38]. In particular we prove existence and uniqueness of a family of tensors (suitably invariant under Möbius transformations) which are the basic b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Korean Mathematical Society

سال: 2010

ISSN: 1015-8634

DOI: 10.4134/bkms.2010.47.5.951